

95-865 Pittsburgh Lecture 10: Image Analysis With Convolutional Neural Nets

George Chen

Faculty Course Evaluations

Please provide valuable feedback/vent your frustration

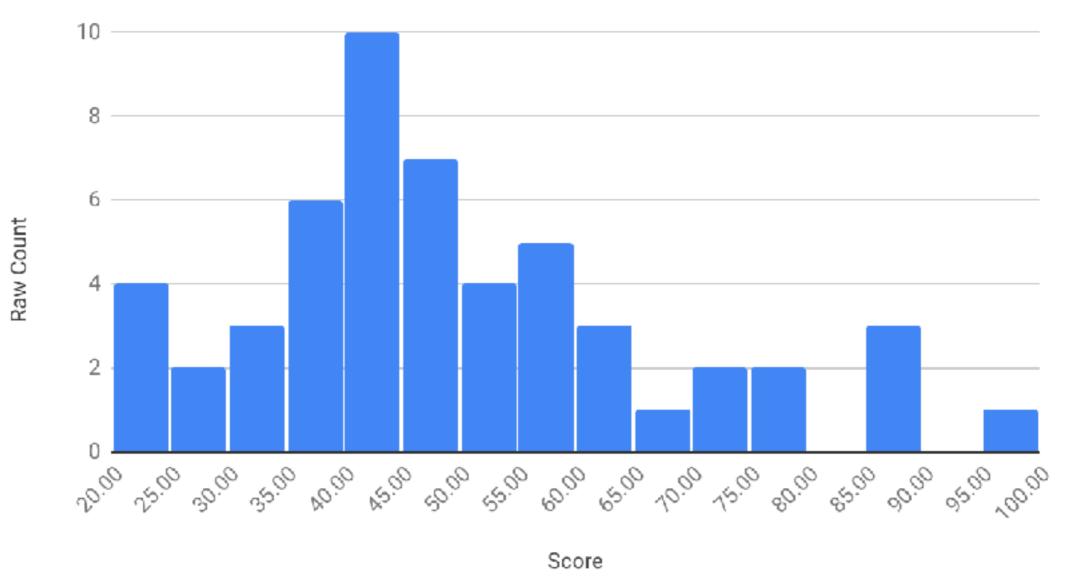
Fall 2018 ISM 95865 Lect A2 UNSTRUC DATA ANALY A2 Begins: Ends: Released: 11/26/2018 12/10/2018 12/26/2018 5% Students responded: response rate 3/19

If you're not sure what to write about:

- what additional Python prep prior to taking the course would have been helpful?
- what Python review during the course would have been helpful?
- most/least favorite parts of the course?

Quiz Results

Fall 2018 Mid-Mini Quiz Histogram



Quiz Results



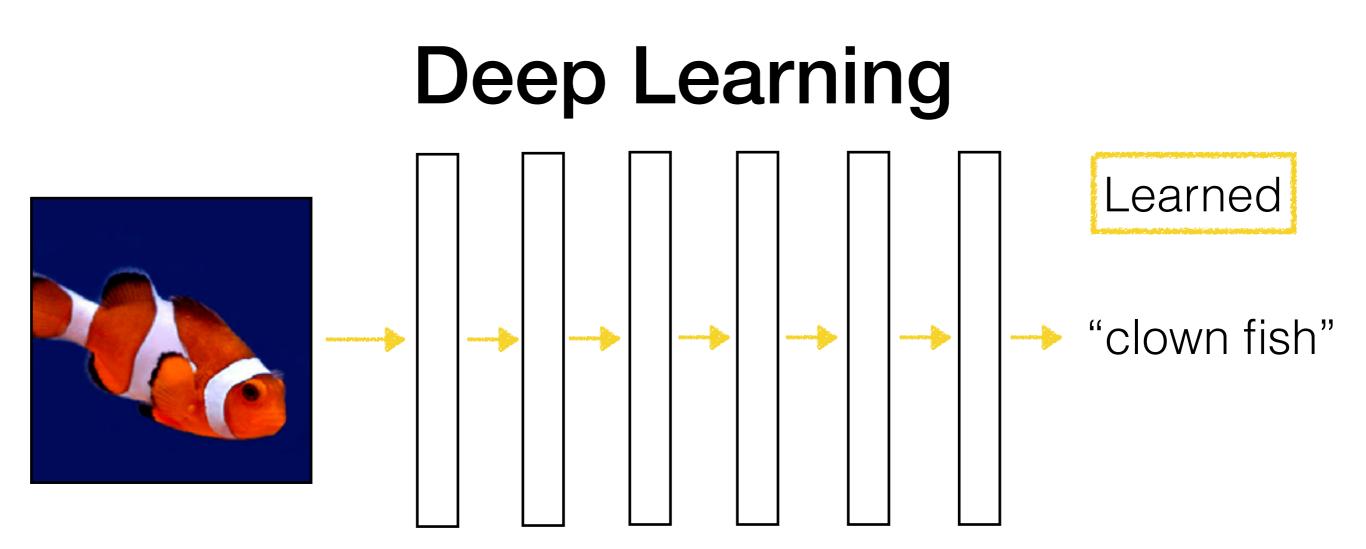
Quiz Results

all 2018 Mid-Mini Quiz Histogran

Australia

1. Don't panic

2. Quiz regrade requests due Friday 11/30 (email me and *be specific* about what you think was incorrectly graded)
3. There's still the final exam Friday 12/14 1pm HBH 1002



- Inspired by biological neural nets but otherwise not the same at all (biological neural nets do not work like deep nets)
- Learns a layered representation
 - Tries to get rid of manual feature engineering
 - Need to design constraints for what features are learned to account for structure in data (e.g., images, text, ...)

Learning a neural net amounts to curve fitting

We're just estimating a function

Neural Net as Function Approximation

Given input, learn a computer program that computes output this is a function

Single-layer neural net example:

```
def f(input):
    output = softmax(np.dot(W, input) + b)
    return output
    the only things that we are learning
    (we fix their dimensions in advance)
```

We are fixing what the function **f** looks like in code and are only adjusting **W** and **b**!!!

Neural Net as Function Approximation

Given input, learn a computer program that computes output

Single-layer neural net example:

```
output = softmax(np.dot(W, input) + b)
```

Two-layer neural net example:

layer1_output = relu(np.dot(W1, input) + b1)

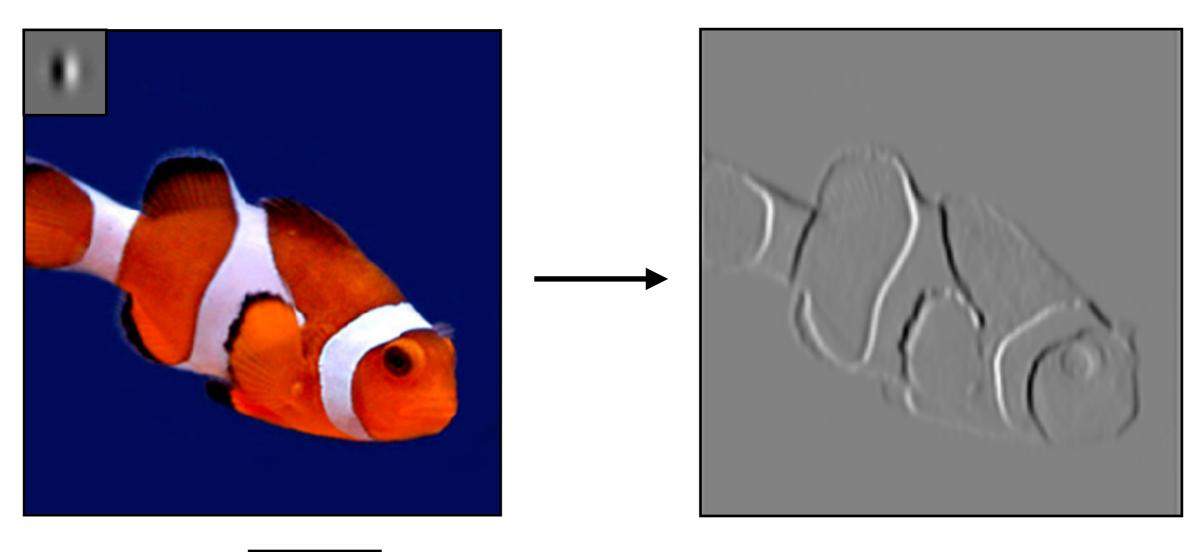
output = softmax(np.dot(W2, layer1_output) + b2)

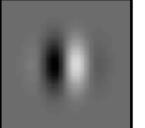
Learning a neural net: learning a simple computer program that maps inputs (raw feature vectors) to outputs (predictions)

Architecting Neural Nets

- Increasing number of layers (depth) makes neural net more complex
 - Can approximate more functions
 - More parameters needed
 - More training data may be needed
- Designing neural net architectures is a bit of an art
 - How to select the number of neurons for intermediate layers?
 - Very common in practice: modify existing architectures that are known to work well (e.g., VGG-16 for computer vision/image processing)

Image analysis with Convolutional Neural Nets (CNNs, also called convnets)





Slide by Phillip Isola

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	0	0
0	1	0
0	0	0

Filter (also called "kernel")

Input image

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	0	0
0	1	0
0	0	0

Filter (also called "kernel")

Input image

Take dot product!

00	00	00	0	0	0	0
00	01	¹ 0	1	1	0	0
0	¹ 0	¹ 0	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0		

Input image

Take dot product!

0	00	00	00	0	0	0
0	0 0	¹ 1	¹ 0	1	0	0
0	¹ 0	¹ 0	¹ 0	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	1		

Input image

Take dot product!

0	0	00	00	00	0	0
0	0	1 0	¹ 1	¹ 0	0	0
0	1	¹ 0	¹ 0	¹ 0	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	1	1	

Input image

Take dot product!

0	0	0	00	00	00	0
0	0	1	1 0	¹ 1	00	0
0	1	1	¹ 0	¹ 0	¹ 0	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	1	1	1	

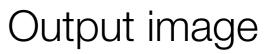
Input image

Take dot product!

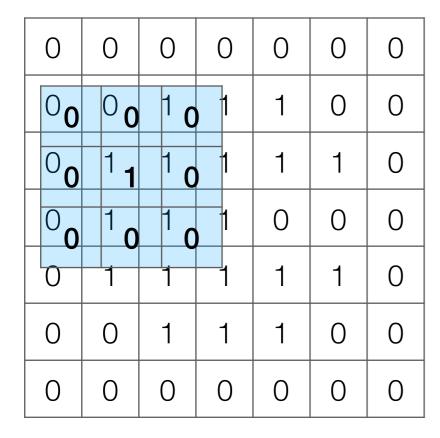
0	0	0	0	O0	00	00
0	0	1	1	1 0	01	00
0	1	1	1	¹ 0	¹ 0	00
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	1	1	1	0

Input image



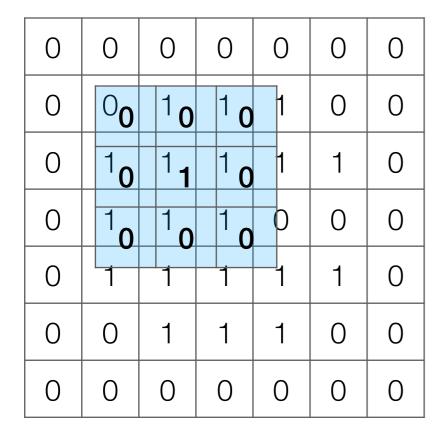
Take dot product!



0	1	1	1	0
1				

Input image

Take dot product!



0	1	1	1	0
1	1			

Input image

Output image

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

1				
	0	0	0	
	0	1	0	=
	0	0	0	

*

0	1	1	1	0
1	1	1	1	1
1	1	1	0	0
1	1	1	1	1
0	1	1	1	0

Input image

Output image

Note: output image is smaller than input image If you want output size to be same as input, pad 0's to input

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0
0	0	1	1	1	1	1	0	0
0	0	1	1	1	0	0	0	0
0	0	1	1	1	1	1	0	0
0	0	0	1	1	1	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

0	0	0	
0	1	0	=
0	0	0	

*

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input image

Output image

Note: output image is smaller than input image If you want output size to be same as input, pad 0's to input

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	0	0
0	1	0
0	0	0

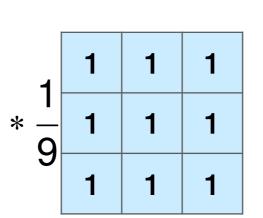
*

=

0	1	1	1	0
1	1	1	1	1
1	1	1	0	0
1	1	1	1	1
0	1	1	1	0

Input image

0	0	0	0	0	0	0	
0	0	1	1	1	0	0	
0	1	1	1	1	1	0	
0	1	1	1	0	0	0	*
0	1	1	1	1	1	0	
0	0	1	1	1	0	0	
0	0	0	0	0	0	0	



	3	5	6	5	3
4	5	8	8	6	3
$=\frac{1}{0}$	6	9	8	7	4
9	5	8	8	6	3
	3	5	6	5	3

Input image

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

-1 -1 2 2 -1 -1

*

-1

2

-1

=

0	1	3	1	0
1	1	1	З	З
0	0	-2	-4	-4
1	1	1	З	З
0	1	3	1	0

Input image

Very commonly used for:

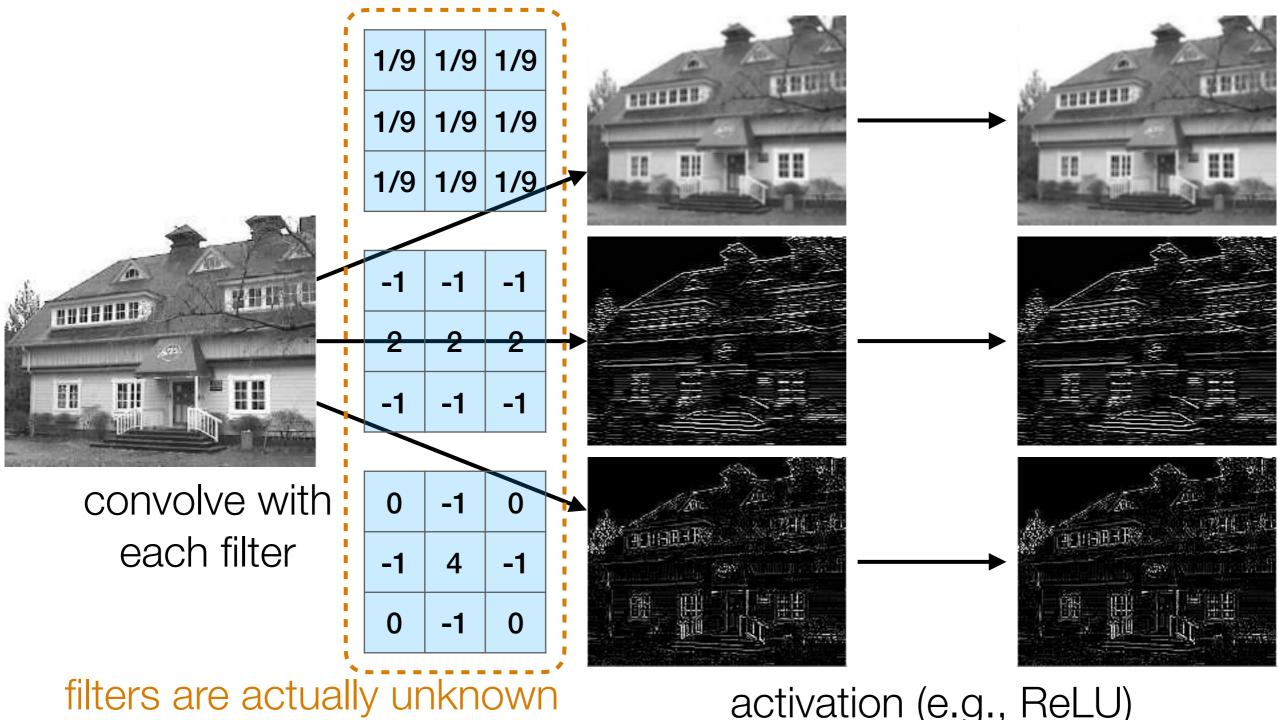
• Blurring an image

	1/9	1/9	1/9	
*	1/9	1/9	1/9	
	1/9	1/9	1/9	

• Finding edges

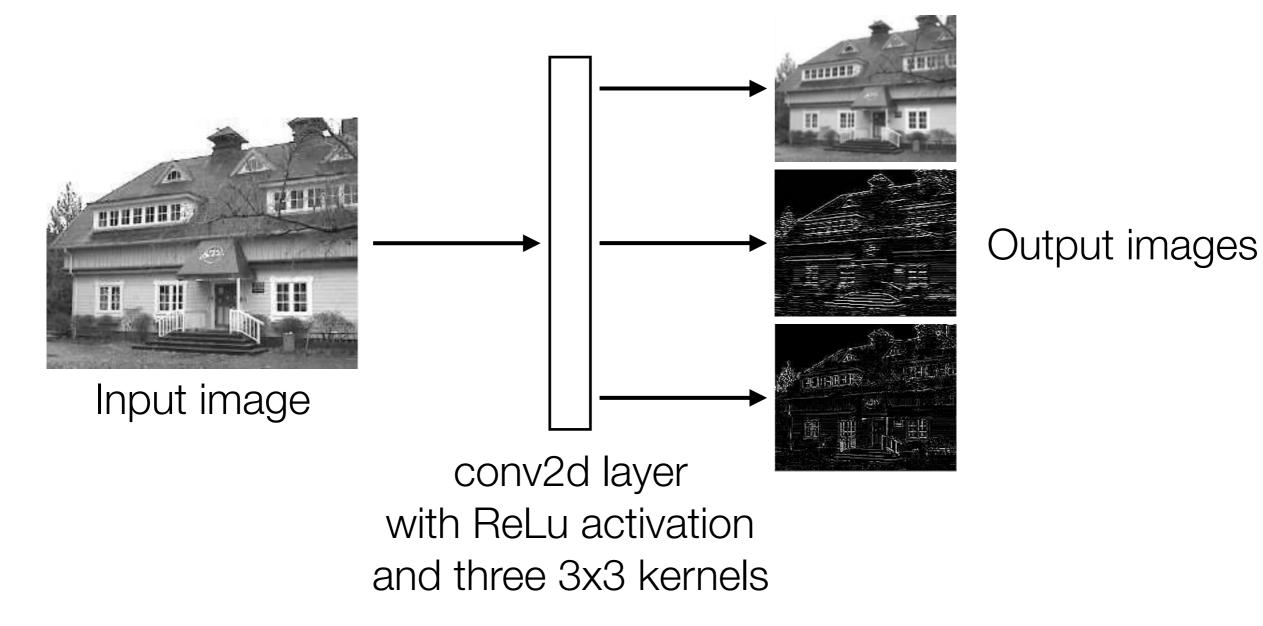
	-1	-1	-1	
*	2	2	2	=
	-1	-1	-1	

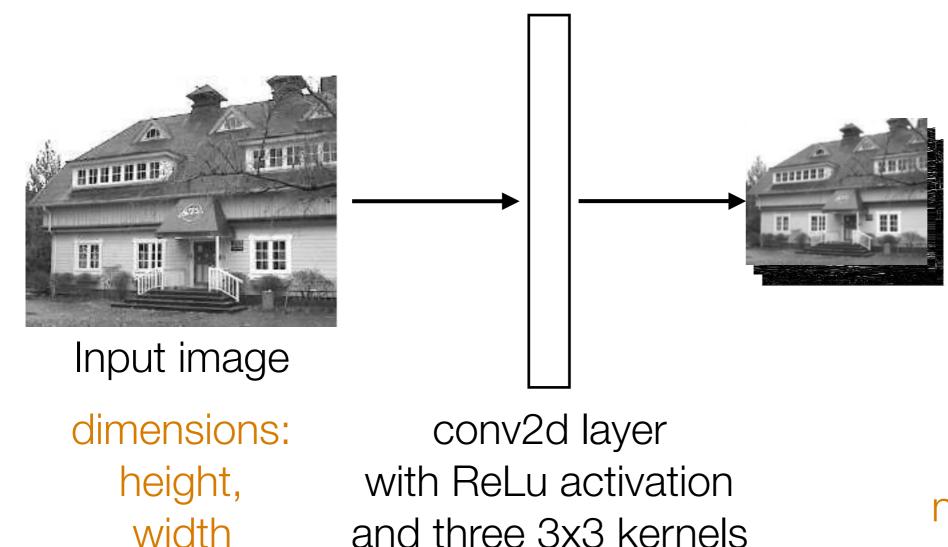
(this example finds horizontal edges)



and are learned!

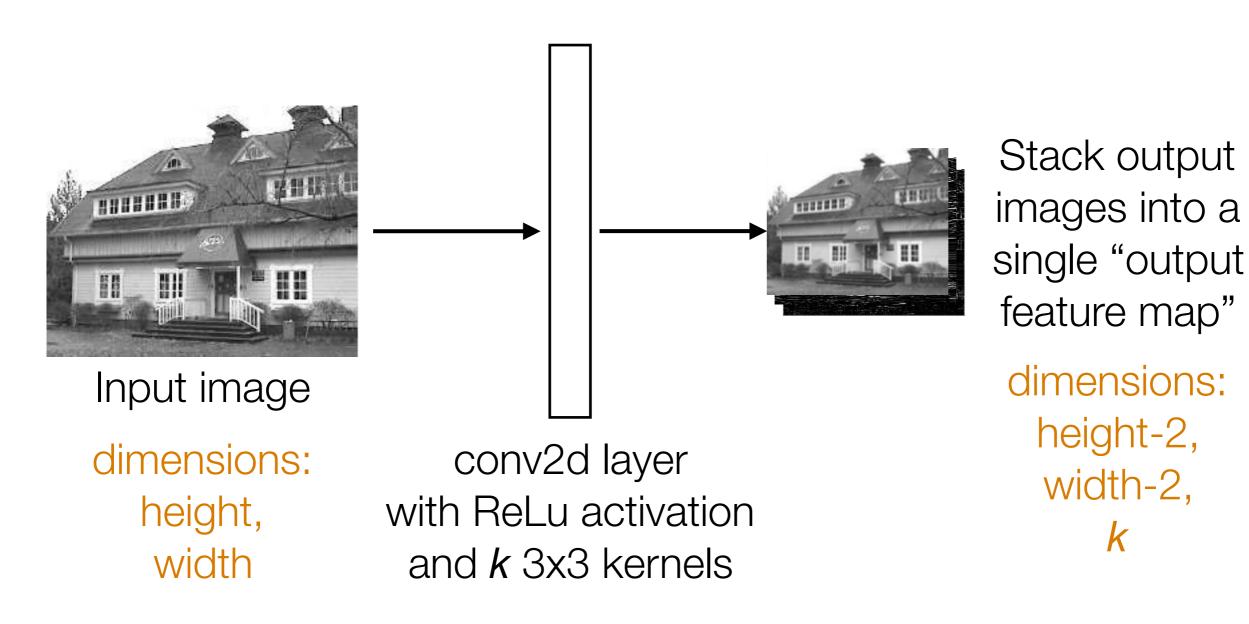
activation (e.g., ReLU)





Stack output images into a single "output feature map"

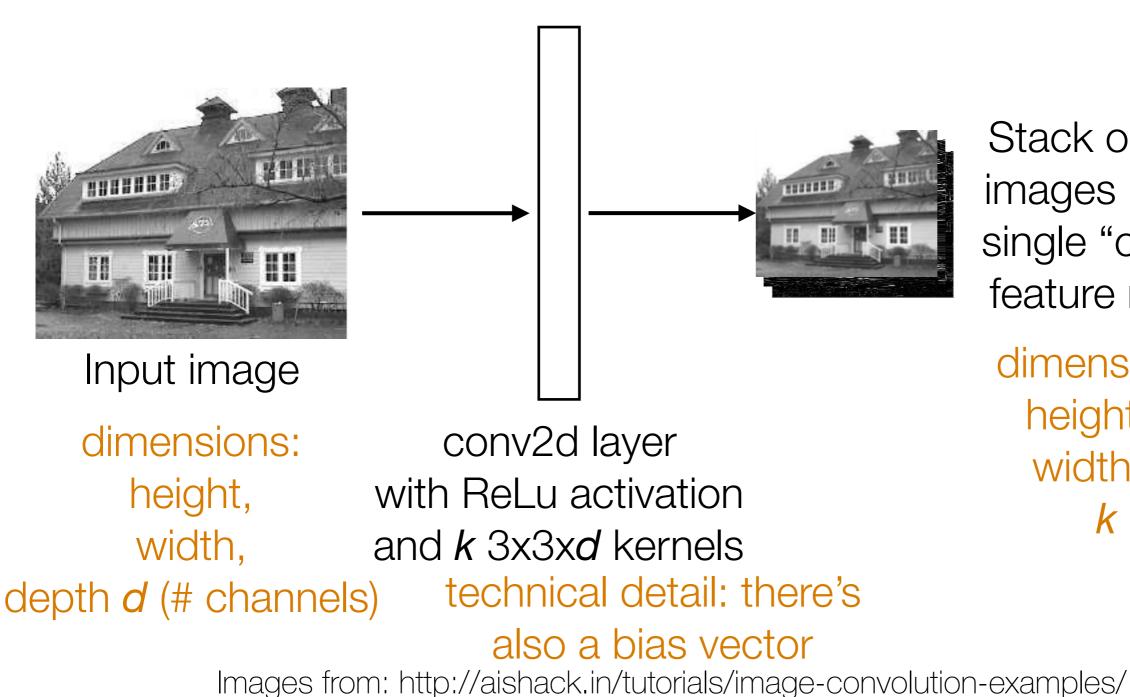
dimensions: height-2, width-2, number of kernels (3 in this case)



Images from: http://aishack.in/tutorials/image-convolution-examples/

width-2,

k



Stack output images into a single "output feature map"

dimensions: height-2, width-2, k

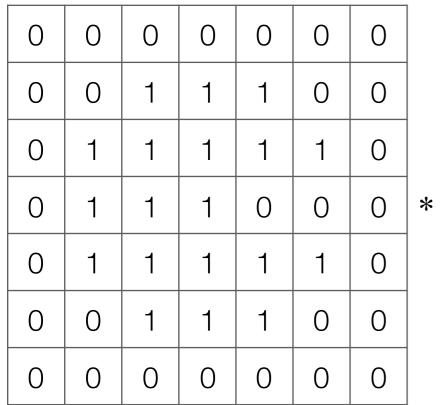
Pooling

• Aggregate local information

 Produces a smaller image (each resulting pixel captures some "global" information)

• If object in input image shifts a little, output is the same

Max Pooling

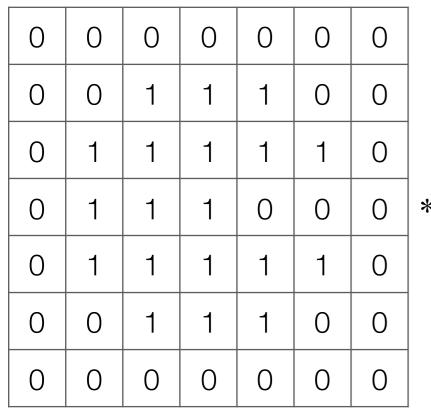


	-1	-1	-1	
<	2	2	2	=
	-1	-1	-1	

	0	1	3	1	0
	1	1	1	З	3
=	0	0	-2	-4	-4
	1	1	1	З	3
	0	1	3	1	0

Input image

Max Pooling



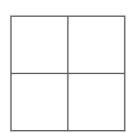
	-1	-1	-1	
*	2	2	2	=
	-1	-1	-1	

	0	1	3	1	0
	1	1	1	3	3
•	0	0	-2	-4	-4
	1	1	1	3	3
	0	-	3	1	0
	U		5	I	

0	1	3	1	0
1	1	1	3	3
0	0	0	0	0
1	1	1	3	3
0	1	3	1	0

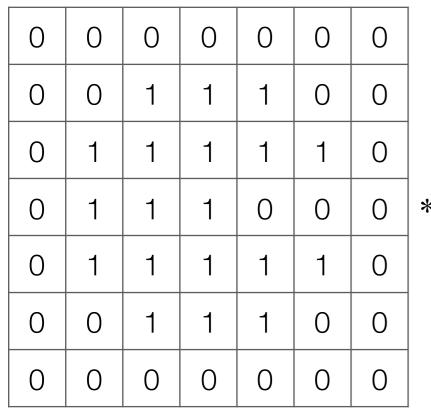
Output image after ReLU

Input image



Output after max pooling

Max Pooling



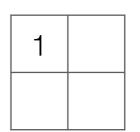
				_
	-1	-1	-1	
*	2	2	2	=
	-1	-1	-1	

	0	1	3	1	0
	1	1	1	3	3
=	0	0	-2	-4	-4
	1	1	1	З	3
	0	1	3	1	0

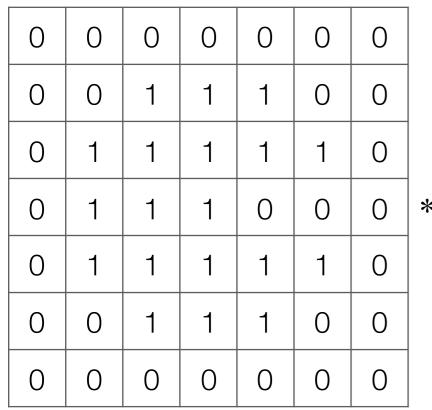
0	1	3	1	0
1	1	1	3	3
0	0	0	0	0
1	1	1	3	3
0	1	З	1	0

Output image after ReLU

Input image



Output after max pooling



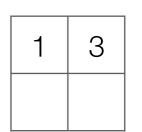
				_
	-1	-1	-1	
k	2	2	2	=
	-1	-1	-1	

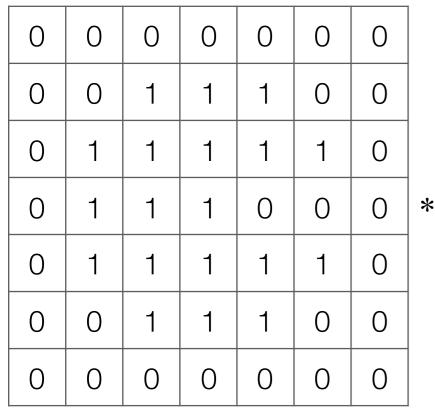
0	1	З	1	0
1	1	1	3	3
0	0	-2	-4	-4
1	1	1	3	3
0	1	3	1	0

0	1	3	1	0
1	1	1	3	3
0	0	0	0	0
1	1	1	3	3
0	1	3	1	0

Output image after ReLU

Input image





				_
	-1	-1	-1	
k	2	2	2	=
	-1	-1	-1	

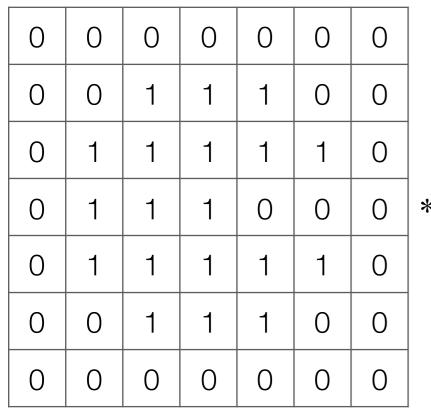
0	1	3	1	0
1	1	1	3	3
0	0	-2	-4	-4
1	1	1	3	3
0	1	3	1	0

0	1	3	1	0
1	1	1	3	3
0	0	0	0	0
1	1	1	3	3
0	1	З	1	0

Output image after ReLU

Input image

1 3 1



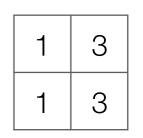
	-1	-1	-1	
*	2	2	2	=
	-1	-1	-1	

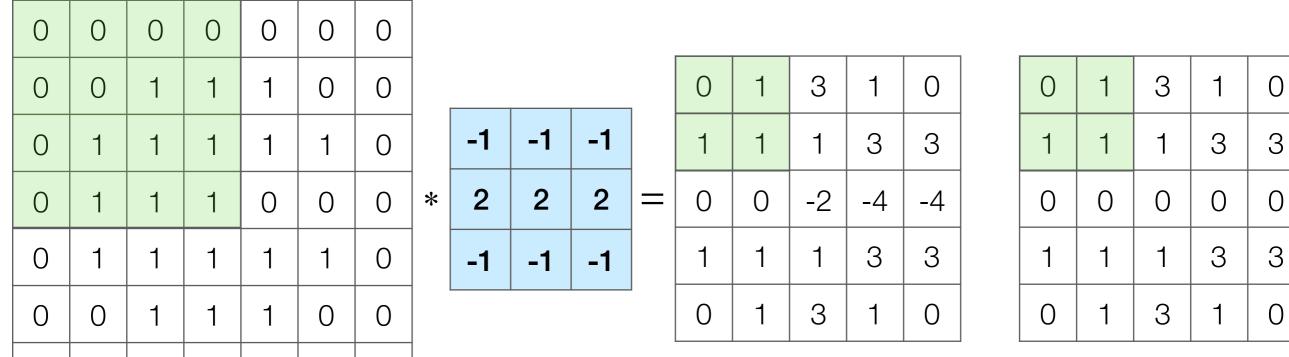
	0	1	3	1	0
	1	1	1	3	3
=	0	0	-2	-4	-4
	1	1	1	3	3
	0	1	3	1	0

0	1	3	1	0
1	1	1	3	3
0	0	0	0	0
1	1	1	3	3
0	1	3	1	0

Output image after ReLU

Input image





Output image after ReLU

Input image

0

0

 $\left(\right)$

0

0

()

0

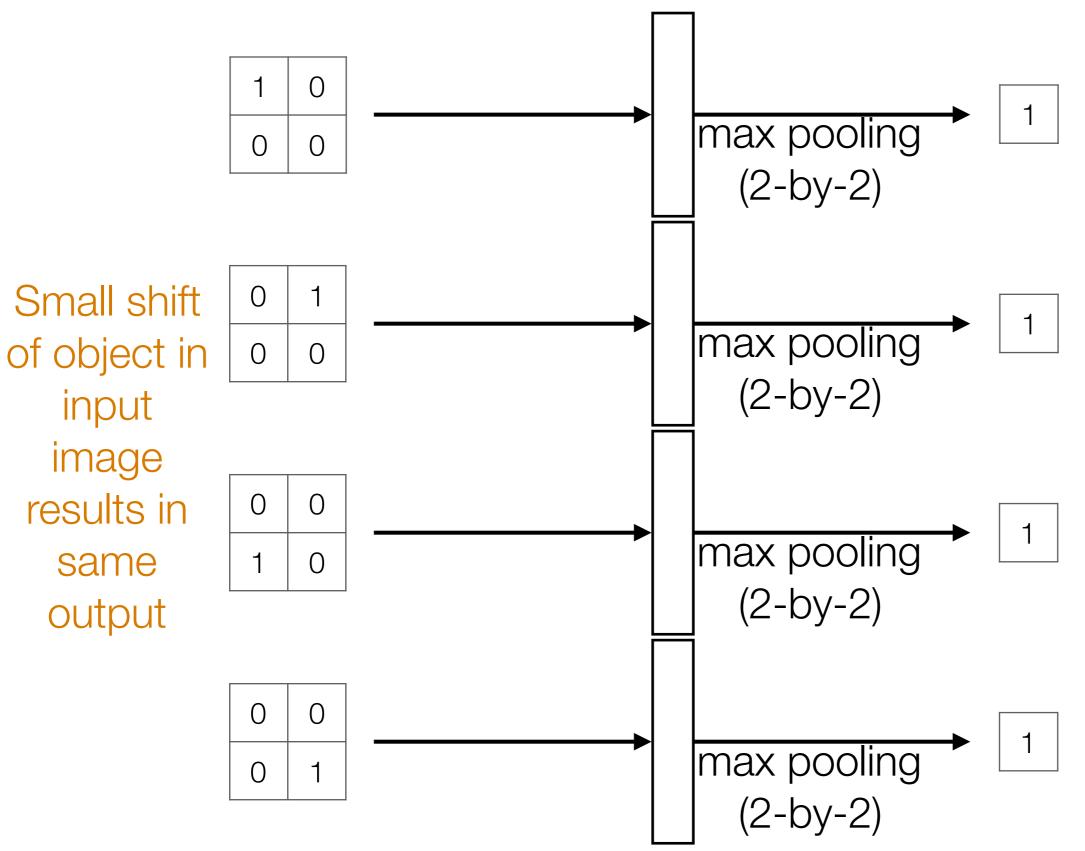
What numbers were involved in computing this 1? -

In this example: 1 pixel in max pooling output captures information from 16 input pixels!

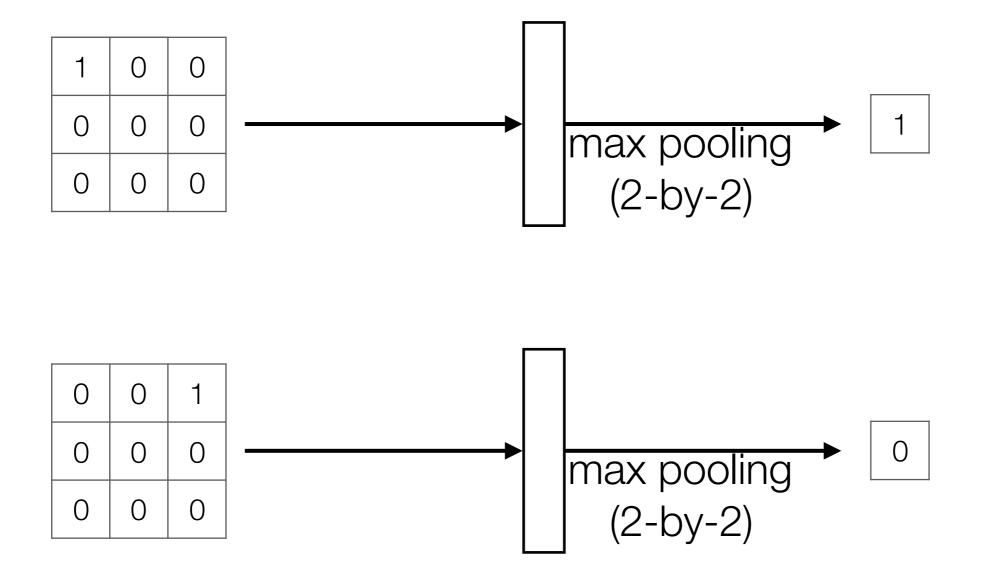
Example: applying max pooling again results in a single pixel that captures info from entire input image!

1 3 1 3

Max Pooling and (Slight) Shift Invariance

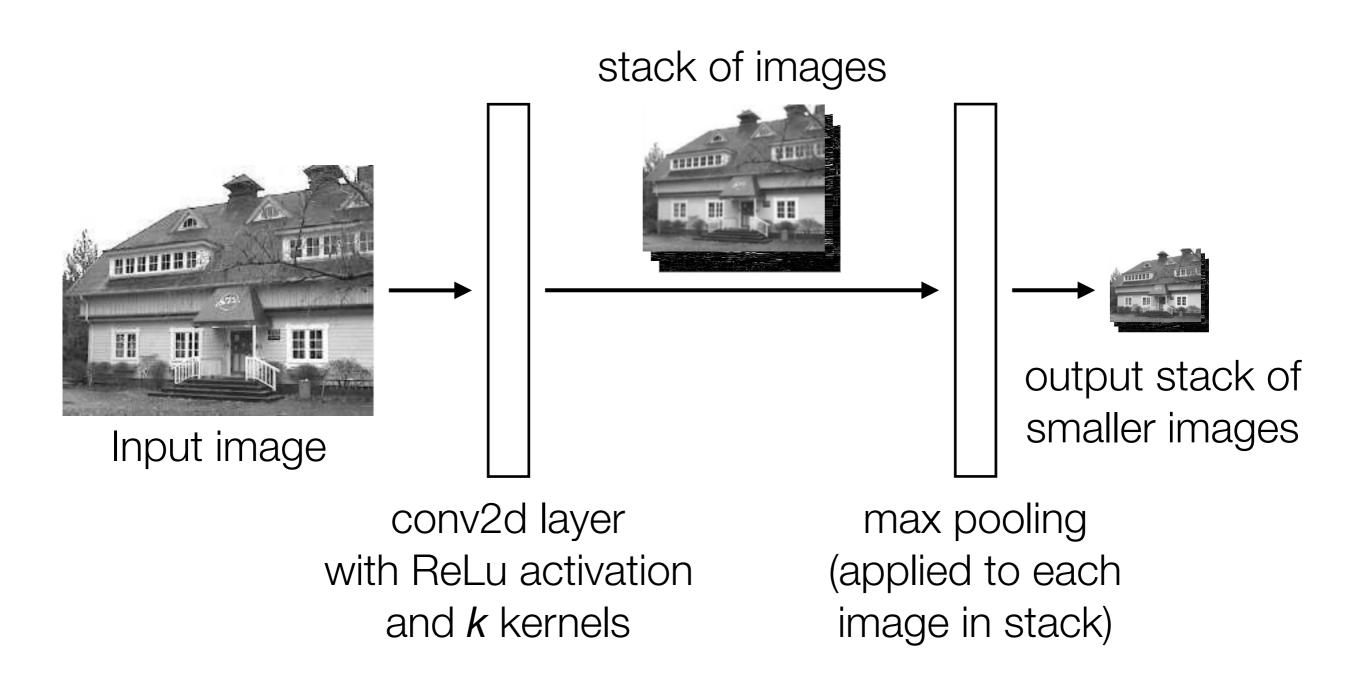


Max Pooling and (Slight) Shift Invariance



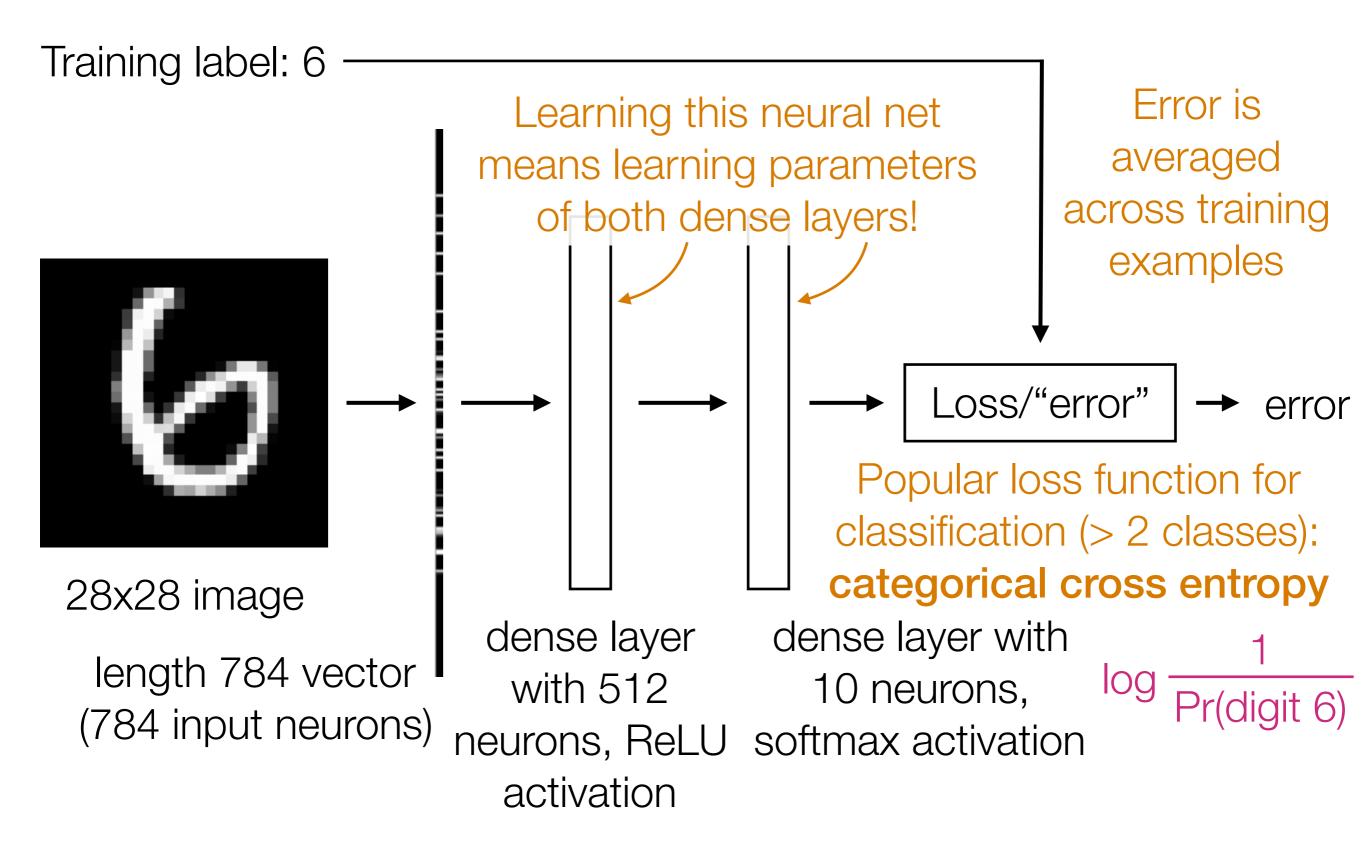
Big shift in input can still change output

Basic Building Block of CNN's

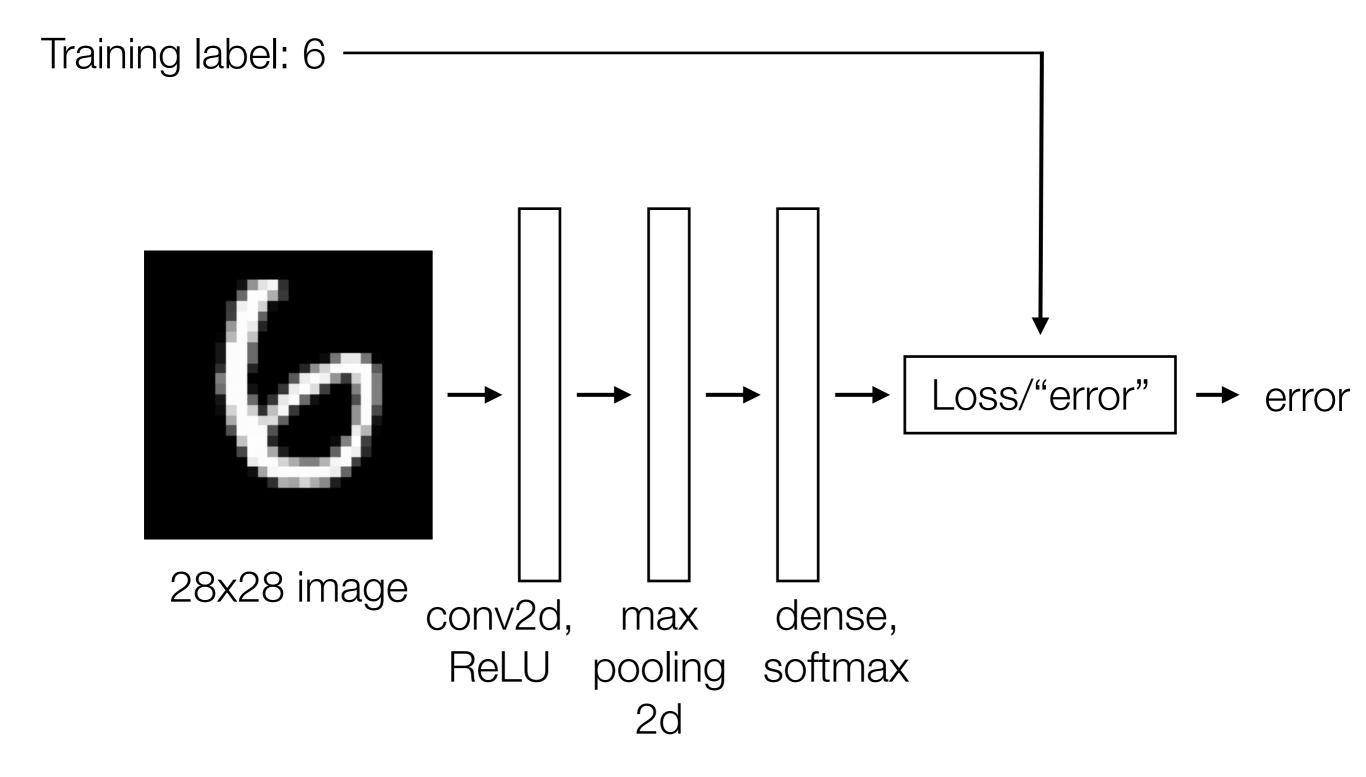


Images from: http://aishack.in/tutorials/image-convolution-examples/

Handwritten Digit Recognition



Handwritten Digit Recognition



Handwritten Digit Recognition

Training label: 6 extract low-level visual non-vision-specific classification neural net features & aggregate Loss error 28x28 image max conv2d, max conv2d, dense, pooling ReLU pooling softmax ReLU 2d 2d extract higher-level visual features & aggregate

CNN Demo

CNN's

• Learn convolution filters for extracting simple features

• Max pooling summarizes information and produces a *smaller* output and is invariant to small shifts in input objects

• Can then repeat the above two layers to learn features from increasingly higher-level representations